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Flow separation at the upstream edge of a square-edged 
broad-crested weir 
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A simple model is suggested to explain the flow mechanism a t  the upstream edge 
of a square-edged broad-crested weir. The separation bubble that may be seen 
t o  occur at  this point is treated as an area of constant static head, while the 
main flow outside the bubble is deemed to be irrotational and divided from the 
bubble by a free streamline. If this model is accepted, the flow pattern will be such 
that energy requirements will be met along the free surface and the streamline 
bounding the bubble while, within these boundaries, the Laplace equation will 
be satisfied at  every point. Accordingly, a solution satisfying these conditions 
is established by the use of a relaxation technique. 

In  practice, it is likely that the cavity flow within the bubble will be bounded 
not by a single streamline but by a turbulent mixing zone and that there will 
be some increase in pressure near the point of re-attachment. Nevertheless, the 
surface profile and flow pattern observed in experiments show fair agreement 
with those predicted using the simple model. Whilst acknowledging, then, that 
the bubble and the zone bounding it are in fact of a more complex character, we 
may say that this simplified treatment affords a sound model o f  the main flow 
and so permits a better understanding of the action of the square-edged broad- 
crested weir. 

1. Introduction 
When water flowing in an open channel passes over a positive step with a square 

edge the main flow does not follow the sharp corner, but takes a path of finite 
radius before re-attaching itself to the floor some distance downstream. A region 
of cavity flow, a separation bubble or roller, is thus formed near the edge. The 
pattern may readily be seen if the flow is well illuminated and contains reflecting 
particles; in figure I (plate 1) it has been made visible by the introduction of fine 
air bubbles. Alternatively, it may be traced by the use of fine threads anchored 
in the flow, as was done by Keutner (1934). 

This, then, is the situation that occurs at the upstream edge of a broad-crested 
weir with a free overfall at  its downstream end. In  the simplest one-dimensional 
treatment of the problem, however, such complicating factors as separation and 
flow curvature are ignored and the velocity distribution is treated as uniform all 
along the crest. BBlanger (1849), using these simplifications, equated the discharge 
to the maximum possible for the total upstream head H which, for an approach 
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FIGURE 2. Simplified flow diagram. 

channel of infinite depth, is simply equal to the height of the upstream surface 
above crest level (figure 2). From Bernoulli’s equation 

(1)  H = d + u2/2g, 

where d is the depth on the crest and u is the velocity. The crest depth for 
maximum discharge, the critical depth, may readily be shown to be $H.  The 
corresponding discharge per unit width would be gi($)#H% but in practice the 
measured discharge is found to differ appreciably from this value and is com- 
monly expressed as Cgi($)QHQ, where C is a coefficient of discharge. 

The principle of momentum might be applied provided that some assumptions 
were made as to pressures on the upstream face of the weir. Doeringsfeld & Barker 
(1941), in their experimental investigation of the square-edged weir, found that, 
with little error, the distribution of these pressures might be taken as equal to the 
hydrostatic pressure distribution upstream, substantially as though the velocity 
heads at the face were negligible. If this result were adopted and the horizontal 
force were then equated to the change in momentum per unit time for the case 
of infinite approach depth (forces below crest level being balanced) then 

+pgH2 - $pgd2 = pu2d. 

3d2 - 4dH + H 2  = 0,  

(2) 

(3) 

d = H  os QH. (4) 

Eliminating u between (1) and ( 2 )  would then yield the result 

If the first root were discarded as corresponding to zero discharge, this 
approach would yield a value for the crest depth of QH, a very different result 
from the previous figure of $ H .  In  fact, Doeringsfeld & Barker found measured 
values in the region of i H ,  half-way between the two figures. 

A one-dimensional treatment of the problem is clearly inadequate. For a 
fuller insight the two-dimensional flow pattern involving separation must be 
studied. With separation the situation is considerably modified; Rouse (1936) 
likened the roller to a small spillway built upon the main weir so that beyond the 
roller the velocity will be rather greater than critical. The form of the roller is 
not fixed independently but is itself one feature of the flow pattern. The aim of 
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FIGURE 3. Models of flow mechanism (a) with constant static head in bubble and 
( b )  with circulatory motion in bubble bounded by turbulent mixing zone. 

the work now described has been to  produce an analytical basis to account for 
that pattern. (The treatment will not be applicable where a free overfall does not 
exist, nor in those special cases where the weir is either so short that no stretch of 
parallel flow can be accomodated or so long that, owing to the effects of friction, 
subcritical flow, controlled from the downstream end and characterized by the 
presence of waves, drowns and modifies the pattern at  the upstream end.) 

2. Flow pattern 
If  the viscosity of the water is neglected, the main flow outside the separation 

bubble may be deemed irrotational and thus amenable to treatment by potential- 
flow theory. Analysis can only be attempted, however, if it is possible to define 
boundary conditions for this flow. In  fact a mixing process must take place along 
the bubble. Nevertheless, the proposal is now put forward that for the purpose 
of analysing the main flow the bubble should be treated as though it contained 
water with negligiblevelocity under a constant static head; i.e., that the boundary 
of the bubble should be treated as a free streamline (figure 3 (a)). 

The real situation must clearly be more complex; there must be some inter- 
change of mass and momentum between the bubble and the flow outside. Rouse 
(1960), when investigating the rather similar flow situation around the end of a 
blunt cyclindrical shaft, declared that the line of separation would not be a free 
streamline but that it would be a line along which the energy steadily decreased. 
Highly turbulent fluid would be re-entrained from the bubble, the downstream 
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end of which \vould fluctuate so as to  throw off pa,rt.s of itself into the main 
stiwin ~ the proccm being accomlmiicd b- a dissipation of energy. 

‘l’hc bubble is, then, likely to  bc: ciroiilatory in chara.cter rather tlian st.atic, 
alt8hougIi the flow within i t  will be coniplev (figure 1) and will varj- with time 
so that  tiirbulcnce will be high although niean velocities and the corresponding 
velocity heads may not be great. Squire (1’3%) suggested tha t  a region of re- 
ciroulation might usefrilly be conceived a.s having a core with a bounda.ry l a y ~  
a,rorincl it, motion witliin t8he core being maintained by shear stresses caused by 
tlic outer flow act,iiig on this layer, thc  core itself being defined as a region wlierc 
viscous effects are virtuall>- absent. 

‘J’he situation secnis likelj- to  have some afinity with leading-edge separation 
oil wings. A more realistic model of the separation zoiic, thereforc, ~ . o u l d  probably 
be as shown in figure :I ( b ) ,  n-hicli follows the sirnldifictl niodel for leading-edge 
sc.pa,ration proposed by Crabtrcc ( 1 %7), amplifying Squire‘s suggestion. Tlie 
bouncla.ry layer will already be of finite tliickncss a.t the  edge of the weir 0, 
but the main turbulent mixing will probably occiir as the layer increascxs from a 
tliickness A B  a t  the highest point of the zero streamline or mean dividing line 
to a tliickness C’D at tlie point of re-at,t,achnient. Xlthoiigli the static liead niajr 
rise from AU t o  C D ,  i t  should change litt,le between 0 and B, for Crabtree, 
finding in his study of leading-edge separation a coiista,nt pressure over tlie for- 
ward part of the bubble, suggested tha t  it should bc possible in tha t  region t.o 
retain soinc of the assumptions of boundary-layer theory, including trhat of no  
variation of the stat,ic pressure norma,l to  the solid surface. 

Again, for tlio related problem of separation a,nd re-attachment dowistrearn 
of a single-step rougluiess elenlent, Mnellcr, Tiorst &, Chow (1‘364) took a simpli- 
fied t,lieorctical model assuming a quiescent wake bcliintl the step. The pressure 
distribution a,loiig tlie wall n-as found to  exhibit three distinct zones, free-jet 
niising at constant pressnre? rr-attachment ;Lgainst rising pressure and re- 
devolupinent a t  essentially constant pressure. A siniilar situation might bc ex- 
pect,ccl in the present casc, but  \r-ould bc modified by the fact that  with the free 
S I I I * ~ ~ L W  tliere is ii pressure gradieiit in tlic inain flow falling in the duwistrettrii 
direction. 

Gp to  the widcst p r t  of the bubble, then, tlie siinplcst hypotliesis Inmposed 
differs but littlc from the inore highly (leveloped models. It is, moreover: tfhc 
condition in this region that shoiild determine thc rate of discharge. Fiirthcr 
don-nstrearn nlierc velocities ha\-e bccome supercritical, local modifications to 
t.lic3 pressure tlistribut,ion should Iinvc oiilj, secondary effkct. (‘l’his point is coil- 
sictcretl furtlicr in t’lie next section.) 

Tlie simplifying assumption ~ nlicreby the bubble is taken as a static zone 
boiuitled by a frco st,rcaniline, is tliert:fore ntlvocatecl as  affording a simple basis 
for cidcldation not  greatly a t  \rariillicc in its effect U ~ O I I  the outer flow with the 
~orioepts of prerious writers. It is aalino\vledgrtl t,hat tlie flow might, properly 
bc dix-i(l(d into tlirec! rcgioiis, namely tho external flow virtually i r r o t a t i o d  in 
chnracter, tlic circulatory zoiic within the bubble a n d  the turbulent mixing zone 
in bctwccn, a,iid tha t  the solutions for ea.ch iniist be matched. Xevertlielcss, an  
ap1)rosiinate solution for any one region, in this case the outer fiov.: may be 
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obtained if the effect upon it of the other two is adequately presented, although 
the behaviour of those two zones has not been fully resolved in detail. 

With the simplified flow model proposed, therefore, an analytical treatment 
has been developed and its results compared with experiment. 

3. Computation 

the Laplace equation must be satisfied at  every point: 
For a two-dimensional pattern of irrotational flow within fixed boundaries 

a2$lax2 + a2$/ay2 = 0. (5) 

The fixed boundaries will themselves be streamlines so $ has a constant value 
along each boundary and within the boundaries there is a unique solution for 
the flow pattern which may be determined exactly for some simple cases. The 
particular problem that arises with free surfaces is that the boundaries are not 
initially given. They must, however, be such as to satisfy certain conditions. As is 
the case for fixed solid boundaries, no flow crosses such a surface, and the surface, 
therefore, may be called a free streamline. Further, if there is no energy degrada- 
tion Bernoulli’s equation must be satisfied at  all points along the line. These 
added conditions, then, ensure that even where a free surface exists and motion 
is influenced by gravity there is still a unique solution. Thus, if at point P (figure 
3 (a ) )  the height of the surface above crest level is y and the velocity is qp with 
total head on the weir H ,  then, from Bernoulli’s equation, 

qP = (2g(H-y))*.  ( 6 )  

When separation occurs, as it does at the entry to the square-edged weir, 
within the separation zone, flow cannot be deemed irrotational and Laplace’s 
equation cannot be applied there. If, however, the outline of the separation 
zone is taken as a free streamline, the area outside this line may still be treated as 
irrotational. If, further, the bubble be treated as though it contained water at 
rest under a constant static head of h’ then a t  point R (figure 3 ( a ) )  on the outline 
of the bubble, the velocity qn is given by Bernoulli’s equation: 

qR = (2g(H - h’))+. (7)  

Although, with these simplifications, the necessary boundary conditions are 
readily specified, the solution cannot be found by direct analysis. The device 
of conformal transformation can, in some cases, be used to determine a flow 
pattern directly and its use has been extended to cases where a free surface exists, 
but it cannot well be applied in the present instance, where the motion is in- 
fluenced by gravitational forces, and, furthermore, separation occurs. Such 
situations can, nevertheless, be treated by relaxation methods such as that de- 
veloped by Southwell (1946) and it is a treatment of this type which is now 
described. 

Basically, boundaries are assumed together with values of $ at each point of 
a regular grid and the $ values are successively adjusted or relaxed until the 
Laplace equation, expressed in finite-difference form, is satisfied at every point. 
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b - 4  

FIGERE 4. Stream function values (a )  for regular star and ( b )  for irregular star. 

The velocities at  the boundaries are then calculated; if they do not everywhere 
satisfy Bernoulli's equation to a certain degree of accuracy the boundaries are 
revised and the process is repeated as many times as may be necessary. 

In terms of finite differences, the Laplace equation has a simple form. If the 
area under consideration is covered by a square grid of lines, distance a apart, 
and at  a point 0 on the grid (figure 4(a ) )  $ has the value $o, while at  the four 
adjacent points 1 , 2 , 3  and 4 the values are $1, $z, and $4, respectively, then, 
if the grid is sufficiently fine the following approximation may be accepted: 

$0 = $2 + $3 + $4). (8)  

If one or more of the relevant strings of the grid is cut by a boundary so that 
an irregular cross or star is formed (figure 4 ( b ) )  then a modified form of the equa- 
tion applies : 

where the distance of one of the points, 2,  from point 0 is in this case &a. 
The area taken for calculation was bounded by vertical lines at distances 2H 

upstream and downstream, respectively, from the edge and by a horizontal line 
distance 2H below crest level (figure 5 ) .  The region so defined included all areas 
of sharply curved flow. Trial lines for the surface and for the bubble outline were 
adopted;:it was assumed that with frictionless flow and a long crest the depth 
would approach a value d at some point downstream where the depth and velocity 
become uniform. $ was given the value zero along the crest and 1000 along the 
surface, and at  each point of a square grid of side 0.2H intermediate values were 
assigned. 

Then, working systematically through the grid, the values of $ at each point 
on the grid were replaced by the values calculated from equation (8) or (9), 
whichever was appropriate, the whole cycle being repeated until no correction 
made within a cycle was greater than a chosen minimum value. A figure of 1-0 
was taken as giving, in general, acceptable accuracy. Greater accuracy seemed 
desirable in the area of very sharply curved flow near the inlet edge. For an area 
bounded by horizontal and vertical lines 0-2H from the edge, therefore, a finer 
square grid of side 0.04H was used and the relaxation process was continued to  
yield an accuracy of ~f: 0.2. 
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When the relaxation process was complete, the velocity at every point where a 
vertical grid line intersected the surface or the bubble outline was calculated, 
again using a fhite-difference expression. 

(10) 
Generally q = ka$/an, 

where k is a constant and n is distance measured perpendicular to direction of 
flow. Where the flow becomes uniform downstream, at depth d, 

FT = [2g(H - a* (11) 

and a$lan = looo/d.  (12) 
Thus k may be evaluated and (10) re-written for the general case 

a$ [2g(H - a)]* -. d q = -  
1000 an 

Then at any point on the boundary such as 2 in figure 4 ( b )  

An estimate of a$/ay is given by (7,h2 - $J/h,a. A better approximation, recom- 
mended by McNown, Hsu & Yih (1955) is 

If Bernoulli's equation was not satisfied throughout (to an accuracy of O.OlH) 
the outlines of the surface and the bubble were revised and the process was re- 
peated until a solution was attained, the aim being to establish the outlines which 



314 W .  D .  Moss 

corresponded to a situation satisfying Laplace’s equation at all internal points 
and Bernoulli’s equation along the free streamlines. 

The calculation, which is highly repetitive but made up of simple elements, 
is best undertaken on the digital computer and this was done in the present case. 
The solution was found by trial, each revision of the boundaries being made by 
hand and the relaxation process and calculation of velocities alone then being 
done by the computer. It would have been desirable to incorporate the revision 
of the boundaries also into the computer program, but it was difficult t o  formu- 
late sufficiently precise rules for achieving an improvement. A change in any part 
of a boundary modified the flow pattern over a considerable area; to raise the 
surface locally at some point, by changing the curvature, altered the velocity 
distribution and, further, could either increase or decrease the total head at the 
point according t o  whether the velocity there was relatively low or high. The 
form of the bubble was gradually evolved so as t o  give a constant velocity 
along the outline, neither the velocity nor the outline having been initially 
known. 

The method of working, then, was to begin with a value for the uniform down- 
stream depth d of $, as given by Bdanger’s approach, and to attempt to derive 
a solution consistent with the physical equations. (Sketches of outlines and flow 
nets were useful as a preliminary to detailed work with the computer.) It did not, 
in fact, prove possible to obtain a solution with this value of d and progressively 
lower values were therefore tried, implying correspondingly lower rates of dis- 
charge. Ultimately a value was reached for which, by a series of tentative 
modifications to the boundary, with each choice influenced by the effect of pre- 
vious ones, a solution was achieved satisfying the assumed conditions. This then 
was accepted and subjected to comparison with experiment. 

The accepted solution for the main grid points as derived and printed by a 
ICL 1905F computer is shown in figure 6. At each internal point on the main grid 
the value of @ is shown. At the intersection of each vertical grid line with the sur- 
face the surface level is shown with, beneath it, the level needed to satisfy Ber- 
noulli’s equation, both expressed as a fraction of H above crest level and agreeing 
with each other to an accuracy of r f :  0.01H. Similarly, at the intersection of each 
vertical grid line with the bubble outline there is shown the level of the outline 
and the static head within the roller satisfying Bernoulli’s equation. This static 
head was found to have the value 0.60-0.61H7 while the uniform depth app- 
roached downstream was 0*45H, comparable with the measured value of &H of 
Doeringsfeld & Barker (1941) already quoted. 

A solution having been obtained assuming constant pressure within the bubble, 
thought was given to the effect of modifying conditions at  the downstream end to 
accord with some measure of pressure recovery towards re-attachment. The out- 
line of the upstream part of the bubble was not changed but the downstream 
part was tapered more sharply to zero thickness so that the total length of the 
bubble was 1.4H instead of 1.55H. With this new boundary for the bubble fixed, 
the free surface was adjusted as necessary, to satisfy Bernoulli’s equation through- 
out. This modification yielded a solution in which the pressure in the bubble, 
while still constant in the upstream half at  0.60-0.61H, rose towards 0.67H at the 
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FIGURE 6. Computer print-out of accepted solution (see text for details). 
Main grid only shown, boundaries added by hand. 

extreme tail. While some changes had been made in the free surface levels over 
the end of the bubble none were needed further upstream nor was the uniform 
downstream depth changed. It seems, therefore, that any pressure rise at re- 
attachment, ignored in the simplified treatment now proposed, should have only 
a local effect. The pressure rise should, in any case, be less than in a semi-infinite 
fluid for with the free surface the pressure in the main stream, instead of remain- 
ing at H ,  falls steadily to a value less than 4H. 

4. Experiments 
In  order to check the validity of the analysis, the surface profile, flow pattern 

and pressure distribution were observed with square-edged broad crested weirs 
set in a horizontal laboratory flume 610 mm wide. Three weirs were made of Per- 
spex and were all of similar construction, a square-cut sheet for the crest being 
cemented on to vertical end-walls, with all joints finished flush; the weirs, 
stiffened by internalribs, were all 152 mm highand, respectively, 152 mm, 381 mm 
and 762 mm long. When in use, a weir was sealed in position in the flume with its 
crest horizontal. The flume was fitted with side rails along which transverse 
instrument carriers could travel. The water supply was self-contained, the water 
being returned by a pump from the downstream end to a header tank fitted with 
ba.ffles and vanes to yield as uniform a flow as possible upstream of the weir; the 
rats of flow was controlled by regulating valves. Water levels in the flume could 
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FIGURE 7. Computed profile and streamlines with observations superimposed. 
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Observed surface Head Crest length 
levels H(mm) L (mm) LIH 

0 76 152 2 
e 51 152 3 
X 38 381 10 
+ 48 762 16 
0 33 762 23 

be measured by means of a point gauge attached to a vertical traveller on the 
transverse instrument carrier, scales with verniers facilitating horizontal and 
vertical measurements. 

With various heads, a series of surface profiles in the neighbourhood of the 
upstream edge were recorded for each of the three weirs, using the point gauge. 
The range of working chosen was such that, in every case, the head was neither 
so great as to give a profile falling with pronounced curvature throughout nor 
so small as to cause the supercritical conditions near the upper end to be drowned 
owing to the effects of friction further down the crest. 

With a head of 76 mm on the weir of length 381 mm the flow pattern was 
established by measuring the mean-velocity direction at a number of points by 
means of a miniature Pitot cylinder. This cylinder was formed from a stainless- 
steel tube, 1.5mm external diameter, plugged at  its mid-point with a rubber 
insert and having two holes drilled in the tube at  points 12 mm on either side of 
the plug, the radii through the centres of the holes making an angle of approxi- 
mately 30" with each other. The tube was supported in a horizontal position at  
right angles to the flow in a suitable frame carried, as was the point gauge, on 
the vertical traveller of the instrument carrier. Each end of the tube was con- 
nected to an open-ended standpipe, the level in which could be observed with a 
travelling microscope, and one end carried a pointer registering against a pro- 
tractor. Thus, the zero reading having been established, it was subsequently 
possible to measure the direction of the velocity vector at any point to an accuracy 
of -t lo, and a series of vertical traverses were made at points along the crest near 
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FIGURE 8. Distribution of observed pressures expressed as a fraction of H 
(with head 76 mm on weir of length 381 mm). 

the inlet end. Along the same vertical sections the static pressures were measured 
using the static tappings of a Pitot-static tube of external diameter 2.3mm. 

In figure 7 the surface profile, bubble outline and streamlines as derived from 
the analysis are shown; the computer was used to calculate and plot the stream- 
lines by interpolating from the grid values of $ shown in figure 6. The experi- 
mental results for surface level and velocity direction are shown superimposed. 
(The depth of approach in the experiments was finite but, nevertheless, with the 
greatest head used (76 mm) the velocity head was so small that the total head 
exceeded the measured head by little more than 1 yo. The analysis was in fact 
repeated for the ease where the height of the weir was not infinite but equal to 
twice the head on the weir. The surface profile and the flow pattern in the area over 
the weir were found not to differ materially, to the degree of accuracy to which the 
computation was performed, from the case with infinite approach depths.) 

The surface levels for the varying experimental conditions lay quite close to the 
line predicted and, over much of the area of inviscid flow outside the bubble, the 
measured velocity directions agreed quite well with the computed streamlines 
to the degree of accuracy involved in the calculation and the experiment. Within 
the predicted outline of the bubble and within a certain band outside it, the 
measured values did not merely lack close agreement with the analysis but 
were generally erratic and unsteady and none, therefore, have been shown 
in this region. The effect seems t o  be consistent with the existence of a high 
degree of turbulence in the region of cavity flow and in the mixing zone bounding 
it. Tani (1958), investigating the cavity flow caused by separation over a step, 
acknowledged the difficulty of measuring the mean velocities which, in such 
a situation, are small while, at the same time, the fluctuations of velocity are 
large. 

The measured distribution of static head is indicated in figure 8. The analysis, 
with its basic simplifying assumptions, implied a free streamline bounding the 
separation zone with a constant static head of 0.60-0.61H. Over the upstream 
half of this line the measured static head was found to have a value of 0.56- 
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0.58H, almost csnstant although slightly lower than the computed value. 
Downstream from the highest part of the bubble, the static head along the 
path:of the hypothetical dividing streamline first rose towards a value of 0.69H 
before falling back, under the falling surface profile, to 0.60H. A certain rise 
in pressure at  re-attachment is therefore indicated. 

5. Conclusion 
The present aim has been to gain an improved insight into the nature of the 

flow over the upstream corner of a square-edged broad-crested weir, It is advo- 
cated that, as a useful approximation, the separation bubble that occurs should 
be treated as an area of constant static head divided by a free streamline from the 
main flow, which is then to be considered irrotational. The main flow pattern 
which is implied by this assumption and which may, with this simplification, 
be determined by analysis, agrees well with observation outside the immediate 
vicinity of the hypothetical dividing streamline. It is accepted that this single 
line will in practice be replaced by a turbulent mixing zone of finite thickness. 
This thickness will increase over the downstream part of the bubble where some 
recovery of static head may be expected and is, in fact, found to occur, in conjunc- 
tion with evidence of pronounoed turbulence. Over the upstream part of the 
bubble the effect is less pronounced and the observed flow pattern near to the 
dividing streamline accords better with the analysis. It is in this region, where 
the bubble reaches its greatest height, that the control will be established, deter- 
mining the rate of discharge for a given head. Further downstream, where velo- 
cities will have become supercritical, friction, neglected in the simplified treat- 
ment, will become significant but this will not affect the pattern near the edge 
nor the rate of discharge. 

Acceptance of the concept of a control established over the separation bubble, 
itself of fixed outline for a given head, implies zl constant discharge for that head 
or, in non-dimensional terms, a fixed coefficient of discharge, unless conditions 
completely alter the situation a t  the upstream edge. If the weir is too short then, 
clearly, the bubble cannot be aocommodated in unmodified form. If the weir is too 
long, subcritical conditions from the downstream end may drown the flow a t  
entry so that critical conditions cannot exist there. If neither of these extremes 
prevail, however, it may be expected that the coefficient of discharge will be 
constant and, indeed, the results of various investigators (such as Horton (1907),  
who summarized earlier work in addition t o  providing new results) have indicated 
that this is the case. The results have shown some variation both between workers 
and within individual investigators but, in general, all demonstrate a range 
with almost constant coefficient ; a mean figure might perhaps be taken as 0.85 
with a scatter of k 0-03 about this mean. This may be compared with the figure 
obtained from the analysis where, with the uniform depth d downstream shown 
to be 0.45H, the flow per unit width would be given by 

implying a coefficient of 0.87, a value within the range of previous experimental 
findings. 

d [2g(H - 4 1 9  = 0*87g* (3)*Hg, 
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The approximate treatment advocated may, then, yield useful results, especi- 
ally if the particular concern is with the irrotational main flow. A sounder basis 
for the assumptions as to boundary conditions could probably be achieved, how- 
ever, if a fuller knowledge were obtained of the distribution of mean velocity, 
turbulence and energy. The relaxation technique has the merit that it may readily 
be adapted for use with a variety of boundary conditions which may be specified 
in various ways, not only by shape but by velocity or pressure distribution. Such 
conditions may be based upon figures obtained by experiment but the analysis 
would be more comprehensive if the boundary conditions were implicit in the 
model developed for the overall flow pattern. A similar technique for calculation 
may be applied to other situations where separation and re-attachment occur. 
In  turn, investigations of other situations of this type, such as that of Rouse 
(1960), dealing with flow around a blunt-ended cylinder, orButt6 & Pichon (1970), 
dealing with flow over a backward facing step in an open channel, may help to 
yield a better understanding of the flow over the square edge of the broad- 
crested weir. 

Owing t o  the complex character of the flow pattern, a single investigation can 
scarcely produce a complete analytical solution which covers the whole pattern 
and is yet free from approximation. Improved understanding is most likely to 
result from a continual coinbination of analysis and experiment, each serving 
to guide the other. The present paper is intended to suggest a provisional simplifi- 
cation which, while serving to stress some essential characteristics of the main 
flow, permits the development of an analytical treatment yielding results cor- 
responding well with observation . 

The work described was carried out at the University of Surrey using the ICL 
1905F machine of the Computing Unit and experimental facilities of the 
Departments of Civil and Mechanical Engineering. I wish to thank Mr J. W. 
Wielogorski who, in supervizing the work, offered help and encouragement 
throughout. 
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